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ABSTRACT

This paper presents a classification of statistical models using a simple

and logical framework. Some remarks are made about the historical appearance

of each type of model and the practical problems that motivated them. It is

argued that the current stages of the statistical methodology for model

building have arisen in response to the needs of more sophisticated procedures

for building dynamic-explicative types of models. Some potentially important

topics for future research are included.
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SIGNIFICANCE AND EXPLANATION

It is shown in this paper how statistical models can be classified in a

simple framework according to the type of data (extrapolative versus

explicative models) and the a priori knowledge of the variables (static versus

dynamic situations). This classification throws light on some polemical

historical points in the history of statistics, is useful in finding the

mainstream of statistical thought, and allows a meaningful interpretation of

the evolution of statistical methodology as a response to the needs of those

models. Finally, this analysis has suggested many topics that appear to be

promising for future research.
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ON THE LOGICAL DEVELOPMENT OF STATISTICAL MODELS

Daniel Pena*

1. INTRODUCTION

Anyone looking through a library of statistical books will find that this

discipline seems to be divided into many different branches that sometimes

appear to be loosely related. There are texts on data analysis and stochastic

processes, on nonparametric statistics and decision theory, on the linear

model and categorical data. But the integrated relationship between these

subjects is not easy to find. Subject classifications of statistical

subjects, such as the AMS (MOS), or even the usual classification of interests

to the members of statistical societies, are not much more helpful. Where

does the unity of statistics lie?

It has been argued (see for instance Box, Hunter and Hunter (1978)) that

the unity of statistics as a science is based on the general goal of building

mathematical models for non-deterministic systems to understand them and/or to

make forecasts or decisions. From this point of view, the strength of

statistics lies in providing scientists with a general methodology to learn

from reality and to approximate sequentially their scientific goals in a

coherent and systematic way.

This paper explores the relationship between statistical models and the

methodology that has been developed to build them. First, a classification of

statistical models is presented that includes those models which constitute

the backbone of this science. Second, their historical evolution is briefly

revised to show that the development of these models flows parallel to the

*Statistics Department, UTSII, Universidad Politecnica de Madrid, Spain

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and
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growth of statistics an a discipline. Third, it is argued that the appearance

of a new class of models has led to changes in methodological procedures, andI the current statistical methodology can be better understood in this

context. Finally, some concluding remarks will be made.
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2. A CLASSIFICATION OF STATISTICAL MODELS

Any sensible statistical model in built using two kinds of resources:

data and logical reasoning. The former introduces the inductive aspect of

inference and the latter the deductive part. Assuming that the objective of a

statistical investigation is to study a (possibly vector) random variable

y, a useful classification of statistical models can be obtained according to

these two dimensions. We shall call extrapolative the class of models that

are built using only past values of the variable y, and explicative those

which also take into account the values of other explicative variables x. In

either case, logical reasoning and a priori knowledge about the variable y

and the way its values are observed will lead us to either a static or a

dynamic model.

Table I shows a classification of statistical models according to these

two basic criteria. In all cases the model can be expressed, perhaps after

some transformation to obtain an additive decomposition, as:

VARIABLE - SYSTEM4ATIC VALUE + NOISE()

An extrapolative-static model, here after termed a type I model, can be

characterized as follows: (1) The systematic value Va is a constant and (2)

the noise has a probability distribution which depends on a vector of

parameters t2 . Type I models include scalar and vectorial probability

distributions. Usually, the noise has an expected value equal to zero, so

that Va is the mean value of y. When y is a discrete variable the value

vi often appears as a parameter in the distribution of the noise.

A more comprehensive approach to explain the behavior of y is to

decompose p' into two terms. The first contains the general level of y and

the second, f 2 (t,8), the effect of a known vector x of predictor

variables. In this way we obtain an explicative-static or type 11 model and

-3-
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it is often assumed, citing the central limit theorem, that the noise has a

normal distribution. The most important class of type II models is the linear

model, obtained when f2  is a linear function of the unknown parameters a:
f(,)= xI8 1 + x2 02 + ... + XkBk

If the variable y is qualitative, it is possible to write a similar

expression (after some transformation) and we obtain the class of log-linear

and categorical explicative models.

The dynamic counterparts of these models are designed to take into

account any sequential character of the observations. There are two basic

approaches to represent the dynamic structure of a system: The first approach

uses a representation that is similar to the static model, but allows the

parameters to change, stochastically, over time. This is generally called the

state-space representation of a dynamic variable. The second approach relates

current values of the variable to past values using a difference equation

representation with parameters that are assumed fixed. For type III models

(extrapolative-dynamic) Table 1 shows the state-space approach which is

characterized by two properties: (1) The systematic part, or expected value,

of the variable changes over time according to a given structure fl which is

typically assumed to be linear, and (2) the noise has a probability

distribution that may or not change over time. For discrete variables, the

parameters of this probability distribution often depend on Pt"

For example, the simplest representation for a discrete stochastic

variable with two possible states and first order Markov dependency is:

Yt M it + ut

p(ut ) - U It P(ut M-t) - I - t (2.1)

t W P01 + Vt-1(P11 - P0 1)

where Yt can only have the values zero and one, p is its expected value

_-
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(in this case the probability that yt equals one), and p0 1  and Pl,

represent the transition probabilities between states zero and one. This is

the classic two state Markov Chain. As we see the probability distribution of

the noise is changing across the time.

As another example, a classical state-space representation of a simple

time series model is:

yt = it + ut

Ut = *It-I + Ct (2.2)

ut and et  are independent normal variables

Both models are particular cases of the general representation of Table 1.

The second approach to the modeling of stochastic processes is the

difference equation representation which has the general structure:

yt = k + g(yt_1,Yt 2 , .. P + ut (2.3)

ut - Ft()•

Here the explicit dependence of yt on its past values is displayed in the

structural equation. This approach has been particularly useful in time

series models. For example, model (2.2) could be written using the backshift

operator, B, as:

Yt - Yt-1 = ct + (1 - OB)ut

or, since the addition of white noise plus an MA(1) process on the right-

hand side is itself an MA(1) process:

(I - *B)yt = (I - B)at

which is an ARMA (1,1) process with standard (2.3) representation:

Yt =  it lYt-i + a t
i=1

or

1(B)yt = at

-6-



where W(B) - 1 - W - ..2 ... and its coefficients can be found using the

relationship:
-1

(1 - #B)(1 - OB) = w(B)

The generalization of type III models to include exogenous variables is

now straightforward and is shown in Table 1. Again two kinds of

representation are possible in the same spirit as model III: a difference

equation representation, which is assumed in Table 1, and a state-space

approach. As both ways can be considered equivalent from a mathematical point

of view, the choice between them has to be made by methodological

considerations: which of these makes the identification of the process

simpler? which is better for estimation and diagnostic checks? (See Pena

(1978) for a discussion of the advantages of the difference equation

representation).

In both cases, the functions f3 and f4 are typically assured to be

linear:

4(t-1,...,)V= *lYt-1 + 42yt-2 + ..

f 3(x,) = V1 (B)x1t + ... + Vk(B)xkt

with

Vi(B)= i +S B + 2B +
i Oi 1i 21

Type IV models include transfer function or dynamic regression

representations, intervention models and multivariate time series with

exogenous variables, among others. It is interesting to note that so far

little has yet been done to develop this class of models for the case in

which y is a qualitative variable, but it seems reasonable to hope that it

will be studied in the near future.

Type I and type II static models can be considered to constitute the

Ofirst generation" of statistical models. They are still the most frequently

-7-



applied models and their study is the core of the statistical curriculum in

most universities. many textbooks even identify statistical model buildingI with this class.

Type III and IV models, the dynamic counterpart of the above, may be seen

as the *second generation". They have emerged in statistical practice in our

century and they are still taught infrequently and, considering that we are

living in a dynamic world, less often applied. However, much research has

been done in recent years on dynamic models and widespread use of them in the

years to come can be foreseen.

The new trends in statistical modeling could be characterized as assuming

more generality in the model structure. The classical representations most

always assume, first, the same pattern or distribution for all the

observations; second, linearity in the response; and third, a simple

distribution for the noise. Although the first assumption was relaxed for

Type I models in the XIX century to accomodate outliers in the sample, its

extension to Type 11 models has been made only in the last twenty years and

its application to dynamic models is still just beginning. The same could be

said of nonlinear statistical models and of the search for more general noise

structures. Table 2 sumimarizes some of these possible generalizations for

each type of model.

. .......... . -..-
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3. SONS COMMENTS ON THE HISTORY OF MODELS

Where does the history of statistics begin? If we think of statistics as

the science which studies how to obtain information about reality by means of

models, it is clear that we should take the emergence of the first statistical

model as the natural birth of this discipline. According to the previous

section we should look for the appearance of the simplest Type I model: A

static extrapolative model f or a count variable with only two possible

different values. Let us call this variable y and agree to establish

y -I and y - 0 to represent these two values. The model would be:

y =p + U (2.1)

where p is some constant which represents the level or mean value of y.

If p is the expected value, the probability distribution of the noise u is

completely determined and should be:

u = 1 - p with probability p (2.2)

U = -p with probability 1 - p

This simple model has some relevant features. First, the probability

distribution of the noise depends only on the constant p which is therefore

not only the expected value of the variable but also the parameter that

specifies the probability distribution of the noise. Second, this model could

be used as a basic block to formulate more complex types of models and, in

particular, the straightforward extension:

fn(A) = ph + C

where fn (A) is the relative frequency of some event, PA its probability

and e the noise which has a binomial distribution with parameters n,

number of trials, and p.

The fact that p was both a probability and an expected value explains

why any of these ideas could be taken as a starting point for the probability

-10- 1
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calculus, (see De Finetti (1975) for a subjective development of this aspect)

and explains why both ideas were so closely related in the XVII century.

Third, as is well known, this model was initially applied to games of chance,

where the value p did not need to be estimated but could be conjectured from

symmetry considerations, and so the estimation problem did not arise.

The appearance of this model required not only the knowledge that

relative frequencies stabilize in the long run, but also the concept of a

probability distribution for the noise. Although the first point was

recognized by writers of the Renaissance at the end of the fifteenth century,

we had to wait until the XVII century for the emergence of the concept of

expectation (Huygens in 1657, see Maistrov (1974), p. 49) and of the idea of a

probability distribution as a mathematical model to be applied to a large

class of problems. (J. Bernoulli in "Ars Conjectandi", see Maistrov (1974),

pp. 68-69 and also Todhunter (1865))

The next important step occurred with the development of a statistic-

extrapolative model for a continuous variable. The practical problem

connected with it was the modeling of astronomical measurement errors.

Following the publication of Newton's theory, many leading mathematicians and

astronomers of his century were concerned with contrasting the theory with

existing data. It soon became clear that a theory was necessary to handle the

several slightly discrepant observations of the same quantity that were

obtained in repetitive measurement, and this led to the model:

y = + u

where now pj cannot be calculated by logical reasoning about the symmetry of

a die or some other gaming device, but must be estimated from the data. This

problem led Daniel Bernoulli to the discovery of the maximum likelihood method

of estimation. (See D. Bernoulli (1777))



The next logical stage in this evolution was the emergence of Type II

models. Laplace stated at the beginning of the nineteenth century that the

variability of astronomical variables could be explained by taking into

account other measurement variables x. He assumed a linear relationship and

was able to estimate the parameters of the functional equation by minimization

of the absolute errors. (See Stigler (1975)). In the application of Type I

and II static models to measurement data, it made sense to think of the error

component as explained by a large number of small additive effects, which led,

via the central limit theorem, to the normal curve.

If the Type I model brought up the central problem of the estimation of

model parameters, the use of Type II model accounted for the development of

the least squares method of estimation by Legendre and Gauss (see Seal (1967)

for a good history of this problem) and for the general development of the

linear model by Gauss.

An interesting fact that emphasizes the importance of practice in the

development of statistical models, as stressed by Box (1983), is the

following. As we have seen, Type I models were first developed for

qualitative variables. However, Type II models for quantitative variables

have not been fully developed until recently (with the log-linear model and

related topics) when the need of a better understanding of complex sample

surveys had become acute.

From the middle of the XIX century, the theory of Darwin became the

moving force for the development of statistical thought, replacing Newton's

theory in leading the mainstream of statistical advances.

The application of Type I models to biological data showed the need for

new kinds of probability distributions to cope with the highly skewed and

heavy-tailed distributions that were observed. Karl Pearson enlarged the

-12-



class of statistical models by proposing a system of frequency distributions,

and faced the problem of estimation by introducing the method of moments.

Fisher was the first to imagine the linear model with qualitative

variables, and to analyze it he introduced the Analysis of Variance. The

importance of Fisher in the development of Type II statistical models has been

clearly discussed by Box (1978).

The concept of stochastic dependence among variables and the need to

build dynamic models did not appear until the end of the nineteenth century,

and so it can be safely stated that dynamic models belong to the present

century, although the roots of a stochastic process can be found in the early

problem of the duration of play, a situation that can be regarded as a linear

random walk with absorbing barriers (see Thatcher (1957)). Type III

stochastic models first emerged in the study of the extinction of surnames by

Galton and Watson, which led to branching processes (see Kendall (1966) and

Harris(1963) ), the work of Bachelier and Poincar& on the random walk to

explain the Paris stock market, the work of Einstein on Brownian motion (see

Brush (1968)), and the seminal work of Markov in 1907 on stochastic chains

(see aistrov (1977)). It should be noted that much remains to be done to

unify the several varieties of Type III models that have since been developed.

The state space representation of stochastic processes has been mainly

used in the control theory and engineering literature. See Rphremides and

Thomas (1973) and Zphremides (1975) for a review of some benchmark

contributions. For continuous variables observed as a time series, the

difference equation representation has been in use since Yule (1927). It is

interesting to note that here, as in other areas of statistics, the parametric

models, such as those advocated by Box and Jenkins (1970), have shown clear

-13-



advantages over the non-parametric approaches, such as those developed for

spectral analysis.

Although some kinds of Type IV models have been discussed in the

statistical and econometric literature, only in the last few years have there

been important steps toward linking this class of model with general

statistical methodology. However, there is still no complete, coherent theory

for building these kinds of dynamic models for qualitative variables.

As might be expected, the vectorial representation of all these types of

models lagged behind the scaler forms. The first multivariate distribution

did not arise until the middle of the XIX century (see Lancaster (1977)) and

the multivariate linear model was first studied in the 1930's and 1940's. The

study of vector representations of dynamic models is still far from

complete. See Karlin and Taylor (1975), Hannan (1970) and Tiao and Box

(1981).

As far as the generalizations of these models are concerned, the concept

of setting up a model in which all the observations do not follow the same

distribution emerged in the middle of the XIX century for Type I models.

Glaisher (1872-73) assumed that the data were normally distributed with a

commnon mean k but with unknown and unequal variances (see Barnett and Lewis

(1978)). Since then, the outliers problem has led to new structures for the

noise that have gone in two directions. The first, and the most rewarding

one, is to embed the classical noise structure into a new, more general,

distribution. This is the path followed by Jeff reys (1932) for the

contaminated normal model, by Tukey (1960) for the mixture of distributions

with different variances, by Box and Tiao (1973) for the exponential family of

heavy-tailed distributions or by Box and Cox (1964) for the transformation

problem. The second path is to assume a change in the systematic part that,

-14-



for Type I models, leads to slippage models (see Barnett and Lewis (1978)).

The extension of these ideas to Type 11 models has been partially made in the

last twenty years but there are still very few results for dynamic models.

The appearance of computers and of nonlinear optimization techniques has

made poesible the growing interest in nonlinear models. Broadly speaking,

changes in the systematic part could be considered as a special kind of

nonlinear structure, but again a general structure is still lacking.



4.* MODELS AND METHODOLOGY

The methodology of statistics has incorporated new tools and procedures

as the need to build new classes of statistical models has appeared. The

application of Type I models for continuous variables motivated the problem of

estimation. The analysis of residuals and the need for careful diagnostic

model checking arose in the development of the linear model. The model

identification stage was first clearly advocated for building ARIMA time

series models. Finally, the development of more complex Type IV dynamic

models is showing the need for a new stage in which the sensitivity of the

model to the data is explored.

If we reviewed the text-books of the 40's and 50's and even many from the

60's, it would be clear that the core of these books refers to Type I kinds of

models. In this context, the main problem of statistical model building was

considered to be the estimation and hypothesis testing problems, and for many

authors the concepts of statistical inference, statistical model building,

estimation of parameters and hypothesis testing were considered synonymous.

The methodology advocated was therefore static. it was assumed that the

statistician decided from the outset what kind of probability distribution

should be adequate to the situation according to his "a priori" knowledge and

then he either went through the traditional process of interval estimation and

hypothesis testing or, he used a Bayesian approach to estimate the parameters

of the model. In the classical framework, a goodness of fit test of the

distribution could be made to confirm the adequacy of the assumed model.

Those textbooks rarely suggested that the initial assumptions about the

distribution could be wrong, and the methodology so stated was static although

full of mathematical harmony. When models of Type II were built, the above

approach seemed obviously inadequate, but the kind of iterative process needed

-16-



for any successful application of these models was regarded by most authors

as* somehow, "cheating with data" and so not deserving of a place in

scientific statistical textbooks. Besides, the fitting of a mltiple

regression model was so cumbersome from a computational point of view that the

* estimation of the parameters of any model became the crucial problem.

The computer made it possible to integrate the Type 11 models into common

statistical practice. Statisticians soon became aware of the need to apply

diagnostic checks to the residuals of a linear model and to use these checks

to reforulate it and to learn from its deficiencies.

Although the analysis of residuals had been done informally before, in

one way or another, by all good statisticians, the systematlic study of how to

identify departures from underlying assumptions and the need to integrate this

knowledge into the model building process did not arise until the 60's.

Anscombe and Tukey (1963) and Draper and Smith (1966) were, among many others,

leaders of this movement, and their work has had a strong influence in

establishing diagnostic checking of the model as an important part of

statistical methodology for building models.

It gradually became clear that the same graphical displays and informal

analysis that were useful to check residuals could be used earlier in the

model building process to identify possible alternative model structures. The

need for these tools was especially urgent for dynamic models in which the lag

relationship is normally unknown and cannot be obtained from a priori

reasons. Box and Jenkins (1970) advocated the need for an identification

* stage as a fundamental step in the statisitcal model building methodology.

Their work on time series models made clear how to investigate empirically the

functional form of Ptfor Type III models, where we cannot rely on external

information to do so, as was supposed (often wrongly) for Type 11 models. In

-17-j



fact, there is one important difference between a classical linear model and

an ARIMA model: in the former, the function f of Table 1 is either

completely known (as in a designed experiment) or is somehow controlled by the

statistician through the choice of the explicative variables, whereas in the

latter the structure of ptis unknown and should be determined from the

experimental data.

An important aspect of statistical model building philosophy is the

concept of robustness. In addition to criterion robustness and inference

robustness (see Box and Tiao (1973)), it is important to take into account the

"data" robustness. Data can be thought of as the ground on which we build the

model structure, and the degree to which alternative models rest on the data

can be quite different. The point goes further than the need for procedures

for outlier rejection because the question we should ask is to what extent the

basic properties of the model are due to a small fraction of data values.

This stage can be called the analysis of data sensitivity or data

robustness. To accomplish this task, techniques such as cross-validation and

influential observations in the spirit of Cook and Weisberg (1982) and

Selsley, Kub and Welsch (1980) can be applied, although much remains to be

done in this field. The importance of thee works is to point out that even

in the well-known and extensively studied linear model, the effects of small

subsets of data on the properties of the model can be unexpected. Needless to

say, when we build a complex Type IV model it is of outstanding importance to

find out if its main properties are based on a small subset of the data to

prevent us from building a whole theory on a small amount of information.

Figure I displays this stage in the framework of statistical

methodology. The figure shows together the logical step's of the iterative

model building philosophy and the parts of statistical knowledge that are

-18-AA



-Logical Reasoning INITIAL MODEL
-Previous Data
-A priori Knowledge

-Sample Surveys IOLETNG' DATAW

-Design of Experiments 
n

-Data Analysis IDENTIFICATION OF THE MODEL
-Descriptive Statistics

Probability Theory rFORMULATE THE MODEL5

Stochastic Processes

Theory of Estimation I I ESTIMATION OF THE PARAMETERS

Significance Test DIAGNOSTIC CHECKING
Predictive Distributions •F

Is the model' Yes

clearly wrong?/

Jackknife 
No

Cross-validation STUDY OF DATA ROBUSTNESSI
Influential Observations I

Is the model0 Yes
robust enough?

WNo

SCIENTIFIC"

Foresting12 Mkn ecsos

Thoyof Prediction Decision TheoryControl Theory

Figure 1. Statistical Methodology
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adequate for each purpose. Data Analysis can be seen as the set of procedures

to identify logical patterns in data that can lead to entertain an initial

model. The study of data sensitivity or data robustness has been

differentiated in the figure from the stage of diagnostic checking. The

objective of diagnostic checks is to investigate if any of the assumed

hypothesis of the model are clearly vrong and could be discredited by data.

On the other hand, the objective of study of data robustness or data

sensitivity, which comes after ye have checked that the assumptions of the

model cannot be rejected, is to measure how the properties of the model are

supported by all the data, and how these basic properties change when some

part of data is not taken into account. For example, Figure 2 shows tvo

simple regression models. In the first, the relationship between x and y

is clearly supported by all the data, wile in the second is based only on two

j points. Indeed, we would like to know if we are in the first or in the second

situation, and, as the complexity of the model increases, the study of this

problem becomes more and more important.

As the study of data sensitivity should be based on deleting observations

from the model, sample reuse techniques, such as the jackknife and the

bootstrap, must be useful. Similarly, cross-validation ideas could also be

useful in this stage.

(A) (B)
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It has been stated that the unity of statistics lies in its methodology

and in its models. These models can be classified in a logical framework

which allows a straightforward interpretation of the history of this science

and it is helpful to understand vhy the methodological changes have occurred.

This point is important for teaching and research. For teaching, it

stresses the need for a different approach to the traditional presentation in

most textbooks. Statistical methodology should be emphasized and the process

of Oenrichuento of the model through generalization from extrapolative-static

models to explicative-dynamic ones should be illustrated with real data.

Probability calculus and the theory of stochastic processes should be

integrated as the mathematical structure needed to build logical coherent

models, and the role of data analysis and descriptive procedures as part of

the model building process should be pointed out. From the point of view of

research, this analysis has identified areas in which much work needs to be

done before a unifed vision of the field can be achieved. Moreover, the

analogy betwen the development of models of different types is useful to

foresee potentially rewarding lines of investigation.
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